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Abstract—A model of free convection in a fluid cylinder submitted to generic boundary conditions is

developed. The fluid is subdivided into a boundary layer region and a nucleus moving with opposite

velocities and the equations of Fourier, continuity and Navier—Stokes in the nucleus are solved exactly in

terms of Fourier sums. The nucleus is linked to the boundary layer to provide the unknown function which

solves completely this problem of convection. As an example the general solution is applied to the case of
a temperature step which is found to travel undeformed through the nucleus (asymptotic solution).

1. INTRODUCTION

THE GENERAL problem of free convection in a fluid
subjected to the gravity field and to a thermal gradient
has been approached for a long time by studying
almost exclusively steady-state situations [1].

The classical theory of an infinite hot vertical wall
in contact with the fluid led to the formulation of the
boundary layer region where the largest temperature
and velocity gradients are observed. In this region the
fluid behaviour is described by a quite complicated
theory developed first by Prandtl [2].

A convenient way to study problems of convective
linear instability is offered by thin fluid layers sub-
mitted to vertical temperature gradients giving rise to
the classical Bénard cells, structures which can be
obtained by maintaining the liquid for a long period
of time in a steady-state condition.

A complete theoretical approach to non-linear
instabilities and unsteady-state situations is still lack-
ing.

In this paper we present a theory of the unsteady
non-linear convective nucleus which holds under very
general boundary conditions when a particular model
of convection is assumed to work. The basic stand-
point is that whenever convection occurs in a fluid
there must be a boundary layer coupled with a comp-
lementary region called a nucleus, where the fluid
flows with opposite velocity to counterbalance the
mass flow in the boundary layer and give continuity
to the system. In the gravity field the nucleus moves
vertically collapsing into the boundary layer at the
edges, regardless of the direction of the thermal gradi-
ent.

The validity of such a description is supported by
experimental data and calculations presented in a pre-
vious paper [3].

The results of the theory are given in terms of gen-
eral equations which can be applied to real systems,
whenever the boundary condition functions are cor-
rectly recognized.

2. MODEL OF CONVECTION

The system under study is a cylinder of fluid, with
its axis vertical, exchanging heat through its lateral
wall.

We assume that convection is already established
in the cylinder : this condition, from observations of
the convection onset in transparent cylinders traced
with coloured solutions, is reached in less than 1 s.

The volume of fluid is subdivided into three regions,
as shown in Fig. 1.

(a) Boundary layer, a layer of liquid (average thick-
ness §) which moves vertically along the wall and
reverses its velocity at the edges. Its temperature is
very close to T, temperature of the lateral wall,
through which heat is transferred by conduction from
a thermostatic bath. The boundary layer acts as a
‘convective heat source’.

(b) Central nucleus, defined as a cylinder of liquid
moving inside the boundary layer with opposite vel-
ocity, independent of the radial distance from the axis
and also independent of the level z. The temperature
in the nucleus is constant at any point of a plane at
level z, but is a function of z and time ¢.

(c) Intermediate region which joins smoothly
regions (a) and (b). Along the vertical boundary this
region is a very thin layer where the velocity and
temperature variations in the radial direction are very
large but not infinite. No fluid exchange occurs
through this wall. At the top and at the bottom of the
cylinder this region allows a smooth bending of the
velocity vector from the boundary layer to the nucleus
and vice versa. The overall volume of the intermediate
region is negligible when compared to regions (a) and

().
3. MATHEMATICAL TREATMENT OF THE
MODEL

The fundamental equations of hydrodynamics
applied to the described model reduce to (Appendix)
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the interval [— 4, A
Gr Grashof number, SgG*(h/2}h*/v*

NOMENCLATURE
a convection constant, T temperature of the liquid in the nucleus
[2RAun Gr'/2 Pr—%3Y/ Ty initial temperature (in the asymptotic
[RM{R—BY(G*(hj2))"*) solution)
A pure constant in g, independent of the Ty surface temperature
nature of fluid u velocity
C, constant volume heat capacity Ug scalar velocity in the boundary layer
C, constants of the complete basis set ¢,(z), (apart from the multiplicative function
inn/h A, Kow v Gri3(1 +049Pr7 Y 12
& components of the strain tensor v scalar velocity in the nucleus
iz initial temperature function defined in vy scalar velocity at 1 = 1,
the interval [0, d] w level in the liquid measured from the
I initial temperature function defined in bottom, A—z
the interval [f—3$, /] y* radial coordinate measured from the
g constant of gravity lateral surface of the cylinder towards
G{z) initial temperature function defined in the axis
the interval [3, 4 —6] = T(2,0}— Ty z level in the liquid measured from the top
G*{(z) initial temperature function defined in z* normalized level in the liquid, nz/A.

Greek symbols

h level of the liquid contained in the B thermal expansion coefficient,
cylinder (=1/p(Ts))(@p/eT)
K thermal conductivity ] average thickness of the boundary layer
K, pure constant in u, 0y Kronecker delta function
i unit vector along the z-axis \% gradient operator
13 hydrostatic pressure V- divergency operator
P stress tensor U coefficient of viscosity
Pr Prandt]l number, v/y v kinematic viscosity, g/p
R internal radius of the cylinder p density of the liquid
t time & energy dissipated by viscous forces
to initial time X thermal diffusivity coefficient.
or  oT o2 . This condition reduces the independent equations
o Ve TXaT Fourier (M in the nucleus from three to two while there are three
unknowns. The system becomes undetermined, but
or = o v Continuity (2)  the third condition will be recovered when the nucleus
dr 0z and the boundary layer are interfaced through an
dv 1 dp ) appropriate continuity equation used as a subsidiary.
R T +g¢ Navier-Stokes. 3) We look for solutions where variables z and r are
separated into single terms
The boundary conditions are .
T 1) = T+ G(2) @ T=Ts + L0 .
vlte) = 1o (5) This approach is correct only if functions f,{¢) and
p(z,15) = p(T)[1 +BG(D)]. (6) ¢,(2) form a complete basic set.

Equation (4) is a general statement about the
boundary temperature function G(z) at the instant z,.

Equation (5) expresses the condition that at 1 = ¢,
the nucleus has already formed.

Equation (6) is the straightforward linear form of
the density at temperature T.

In a purely convective system the term
(8°T}0z*) =~ 0 and equation (1) becomes indis-
tinguishable from equation (2), since p is a function
of T like equation (6).

We can write

orT ]
E = ;fn(l)(/)n(z)

e

0T
v =3 LA00(0),(2)

and equation (1) becomes

Y £ (0.2 = ¥ £ (De(D) () = 0. (8)
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Equation (8) is satisfied if the following hold for
any n:

$.(2)
S —o() £.() 6.0 - 0 ®
ie.
92 _ o whichgives $,(2) = A, exp (C.).
$.(2)
(10)

Equation (9) becomes

v(t) = C{r;,,tzt) (for any n). 1

Since v(¢) is independent of »n, from equation (11)
we must satisfy for any » and a fixed & the following
condition:

L S
Chu® " Chi® 12
which is equivalent to
dfs _ G dfi
fo G fi (13)
Equation (13) upon integration gives
£ul) = L1, (14)

From equations (11) and (14) with £ = 1 (chosen
at will)

o(t) = £,)/IC.£.(0] = [1(O/IC, f1(D)]
£ = A1),

Equations (15) and (16) mean that in order to solve
for ¢,(z) = A,exp (C,z) we have to determine the set
of constants C, and A4, and only one function f,(1).
The constants will be determined by means of the
boundary conditions, while f,(z) will be obtained
through the continuity condition applied at the inter-
face between the nucleus and the boundary layer (see
later).

We determine first the constants by observing that
in equation (7) T must converge to Ty for — oo
because the liquid must reach the temperature of the
bath in contact with the lateral wall of the cylinder.
This final condition is obtained by defining a properly
shaped function G*(z) such as (at r = t,)

(15)
(16)

0 forr —h<g<z<0

6*(2) = M(z) for 0<z<é an
G(2) for o<z h—46
fPGE for h—6<z<h

where f{V(z) and f{?(z) are functions expressing the
(small) temperature variations in the boundary layer
region [4] and G(2) is defined by equation (4).

Att = t,equation (7), using equation (10), becomes
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T(z,ty) = Ts + ). fa(to) A, exp (C,2) = G*(2) + Ts

(18)

which satisfies equations (1) and (2) with boundary
condition (4) in the nucleus; moreover, at t =0 it
satisfies /{V(z) and f{?(z) in the boundary layer.

Since any function defined on a finite interval can
be written as a Fourier series we conveniently put

G*(z) = i o, exp (innz/h)

—w

with 19

h

d,,=ﬂ i,

G*(z)exp (—innz/h) dz.
By comparing equation (18) with equations (19)
we obtain

{an = fn(ZO)An (20)

C, = inn/h.

The result of equations (20) is astonishingly simple
despite the complexity of the problem. In fact we are
now able to calculate any f, once f is known,

From equations (16) and (20)

fu®) = f1().

The resulting T(z, t) in equation (7) is

A f
Ten=Tt X %y

where f(¢) is the only unknown function. However,
the velocity v(f) must be a real function: as a conse-
quence, from equations (15) and (20) we obtain

02y

exp (inmz/h) (22)

_fi) h
Since any complex function may be written as
S1(0) = B@)exp [ (1) @4
equation (23) becomes
oty = 1 BOSRBOL+HBOV O exp B O] 0

in B() exp [ig(1)]
The condition of reality of equation (25) implies
B(H)=0 or B(f) =constant = B(s,). (26)
Equation (22) becomes

T(z,t) = Ts + i a, exp {in[y(2)

—y(2,)1} exp (inmz/h). (27)
Equation (23) becomes
o) = 2 0. (28)
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Fic. 1. Model of free convection in a vertical cylinder
(Ts<T).

By putting x(¢) = ¥ (1) —y(¢,) equations (27) and (28)
become

T(Z, t) = TS +

”n

i a, exp [inx ()} exp (innz/h)

() = X(Oh/n (29)

where
x(toy=0.
The constants «, are given by equations (19)
1 [
o, = 271J . G*(z)exp (—innz/h)dz.

If we put z* = zn/h we obtain
- ;f G*(*)exp (—inz*)dz*.  (30)

We have now to determine x(¢) with the condition
x(t,) = 0. This can be accomplished by the additional
continuity equation at the boundary between the cen-
tral nucleus and the boundary layer

aop

-+ V- (pin) =0

at
g op
= — | dvV.
qudS Jatd

We calculate equations (31) by considering the volume

V, as illustrated in Fig. 1, formed by the upper (or
lower) cylindrical part of the boundary layer. This
choice is compulsory to obtain information from the
continuity equation not coincident with already
known equations. We write

(31
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o - [ op
J puNdS+J\ pigdS = — f dVv
AN S i
where the surfaces of integration Sy, and Sy are chosen
as described in Fig. 1 and uy and u, are the velocity
vectors at Sy, and 8y, respectively. Since the density p
in Vis almost equal to p(Ts) we havc

(T .
9T o and } “Lav~o.
&t w Ot

R

In scalar form and recalling that uy = ¢ we obtain

f —puNdS+J puy dS =0
Su S 32)

”

—2p(8, D(R—06) n+ p(Ty)

uydS = 0. ]
The integral in equations (31) may be calculated
taking from the literature [5] the value of u;; as

Uy = Uyl
where 4 is a function of y/d and
uy = Kiw "wGri(14+049pr5 %) 12

where K, 1s a proportionality constant, w = sA—z, v is
the kinematic viscosity, Gr the Grashof number and
Pr the Prandtl number. This formulation of uy is
deduced for a laminar flow and by approximating the
problem to a plane surface at constant 7. However,
experiments indicate that the correct combination of
Gr and Pr in free turbulent convection is G’ Pr~**
[5],ie.

L "T(&,z)—?‘s)i !
_ 3 p-- 23 p SA s
J wwdS = 2eRan G (TG

with

\yz

= (BGO)

The velocity v is given by
2RAup(T) Gr'? pr- 23

U= R=0yplo. G D T 0TI

(33)

We observe that in equation (33) the ratio
p(Ts)/p(8, 1) =~ | to a very good approximation and,
recalling that v = XA/n, we have

%= alTG, 1)~ T (34)
where
2RApn Gr'* Pr
= 35
¢ RS R G
and
x{ty) = 0. (36)

From equations (29) we calculate
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75,8 = Ts + i a, exp {in{x(¢) + né/h]}

or
7@, ) —Ts = G*x(Dh/n+48].
By substituting in equation (34) we obtain
X = aG*'"P[x(t)h/n+ 9]
x(20) = 0.

Equation (34) has the general solution (integral form)

(37

=a(t—1t,). (38)

x(t) dy
.[, G*Y3(yh/n+0)
The entire set of equations is now solved and can
be applied to various practical and theoretical situ-
ations by changing the boundary conditions and vary-
ing the choice of G* at will. In the following section
we report a solution which is asymptotic and in our
opinion is important to clarify the physical meaning
of a steep temperature gradient applied to a cylinder
of fluid obeying our model.
Once the solution of equation (38) x(?) is known, we
observe that the hydrostatic pressure in the cylinder is
given by the following formula (Appendix) :

p = (hi[n+g) J:P(Ts){l —BIT(z, 1)~ T5]} dz+ Py

39

where P, is the hydrostatic pressure at z = 0.

4. ASYMPTOTIC SOLUTION

We choose as the boundary function G*(z) =
(Ro— T5)0(z) where 6(z) is a double step function:
0(z) =0 for —h<z<d, h—d<z<gh; 8(z2) =1
for 6 <z < h—3d. At t = 0 the nucleus is at T'= T,
and the boundary layeris at 7= Ts.

The differential equations (37) become

%= a(To— Ty 20Ix(Dhfn+ 8]
{x(to) =0 (40)
where

ae 2RAum Gr'i3 pp—23
T RR=8)(T,—Ts)'"™

The solution of equation (40) is
a(To—Ts) (e —1o)
n(l—28/h)

e L1< ty +

fi —_
o T aTo=T)"

x(1) =+ (41)
(1—26/h)

(1 —26/k)
{ for ¢t> to -+ W

As a consequence
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h
o(t) =~ (1)

or

( ha(T,— Ty)"”

n
(1 —26/h)
SISty ot

o(f) = < for tySt<ty+ e

0

n(1—26/k)
L for 1>t + mt‘fs—)vi

The temperature function is determined by cal-
culating the a, coefficients by means of equation (30)

= :o:l;j (To—TB(*) exp (—inz*) dz*  (42)

where
9z*)=1 fordn/h<z*<(1-96/h)n
and
8(z*) =0 for —n < z* < nd/h
and {1 —o6/h) < z* < =
From equation (41)
%, = (To—Ts)

i[(—1)"* Lexp (—innd/h) +exp (innd/h)]
x 2nn ’

(43)
As a consequence the temperature function is

T(z0)=Ts+ ), o,explin(x(D+nz/h)] (44)
where «, are given by equation (43) and x(¢) by equa-
tions (41).

Equation (44) is a step function which travels
through the nucleus and is obviously a limiting case
of convection. The real case is obtained by replacing
the 6(z) function with an appropriate smoothed step
function which will be described in a forthcoming
paper.

5. CONCLUSIONS

The equations presented here apply to a liquid con-
tained in a cylindrical vessel, but, as we will show in
another paper, a more general formulation for any
form of the container is possible, provided that the
appropriate geometrical and boundary layer func-
tions are used. As far as the convective nucleus is
concerned no cylinder thickness or height is required
to provide a valid range to our equations. The only
limit of this theory is in the approximations involved
in the boundary layer equations, if the convective
nucleus exists.
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APPENDIX

The fundamental equations of hydrodynamics are:

P }i’t (¢, 1) +pia Ve, T) = V- (KVT)—pVi+¢ (Fourier)
a
55 + ¥V (pi) =0 (Continuity)

?'. =
‘9(52; + p(ii+Vyii = pg+V+ P (Navier-Stokes).

By choosing the z-axis as in Fig. 1 and putting T = T{z,)
and @ = —ov(¢)k, these equations become equations (1)-(3).

The Navier-Stokes equation gives, for the components x
and y (with the sum rule convention and by numbering x, y. =
as X, X5, X3)

(AD

As P, = —pé,, equations (Al) become dp/dx = épjdy = 0,
ie p=plz).

THEORIE GENERALE DU NOYAU CONVECTIF D'UN FLUIDE DANS DES
CONDITIONS D'ETAT NON PERMANENT ET DE NON LINEARITE

Résumé—On développe un modéle de convection naturelle dans un cylindre de fluide soumis a des

conditions limites génériques. Le fluide est divisé en une région de couche limite et en un noyau se déplagant

avec des vitesses opposées et les équations de Fourier, de continuité et de Navier-Stokes dans le noyau

sont résolues exactement en fonction des sommes de Fourler. Le noyau est couplé A la couche limite pour

fournir la fonction inconnue qui résout compiétement ce probléme de convection. Pour illustration, la

solution générale est appliquée au cas d’un échelon de température lequel se déplace sans déformation 3
travers le noyau (solution asymptotique).

ALLGEMEINE THEORIE EINES FLUIDEN KONVEKTIONSKERNES UNTER
INSTATIONAREN NICHT-LINEAREN BEDINGUNGEN

Zusammenfassung—Es wird ein Modell der freien Konvektion in einem Fluidzylinder entwickelt. Das

Fluid wird in ein Grenzschicht-Gebiet und ein Kern-Gebiet unterteilt, welche sich mit entgegengerichteter

Geschwindigkeit bewegen. Die Fourier-, Kontinuitits- und Navier-Stokes-Cileichungen fiir den Kern-

bereich werden in Form Fourier-scher Summen exakt gelést. Der Kern wird mit der Grenzschicht

gekoppelt, was die unbekannte Funktion und damit die vollstindige Losung dieses Konvektions-Problems

ergibt. Als Beispiel wird die allgemeine Losung auf den Fall eines Temperatursprunges angewandt. wobel
sich ergibt, daB dieser unverdndert durch den Kern hindurch Huft {(asymptotische Losung).

OBINAS TEOPHS TEUEHUS SPA XHIKOCTH IPH CBOBOJHOM KOHBEKIIMW 4715
HECTALTMOHAPHBIX ¥ HEJIWHERHBIX YCIOBHHA

Anmoramus—PaspaSorana Moge chofonuoN KONBEKUMY B IMUARHAPE, 3ANOJHEHHOM KRAKOCTHIO, IPK

HPOE3BOBHBIX IPAHAYHBIX YCI0BHAX, OOBEM, 3aHATHIH KHAKOCTRIC, MONPA3AENSETCH Ha 06aacTh nor-

PAHHYHOTO COS M SAPO, ABMXYIUIMECH ¢ NPOTHBOMOJOKHEIMA CKOPOCTAMM; YpaBHEHHS Pyphe, Hepas-

poiBHocTn 1 Happe—CTOKCA JUIS AP TOYHO PEIIAOTCH C NOMOLUBIO CYMMMPOBAHUS TapMOHHK pARa

®ypue. Peurenme 1718 SOPA CBA3BIBACTCA © PeUiCHHEM [UIA MOrPAHMYHOrQ Ciod. B kauectse npumepa

nano obliee pelgeHMe 3aJavy JIs CAY4as cKayka TEMIepaTyphl, KOTOPBIH, KAK 0Ka3aj10Ch, He M3MEH-
SETCH JUTH SAPA {aCAMITTOTHYSCKOE PeLeHue).



